Pages

English French German Spain Italian Dutch Russian Portuguese Japanese Korean Arabic Chinese Simplified
↑ Google Translator

Do you think that these are the best solutions for your problem?

Different Methods Of Liposome Manufacturing

By Jody Leach


Liposomes have attracted much attention since they were first discovered. These artificially created, microscopic spheres have many properties that make them extremely useful. One of these is their bio-compatibility. They act in exactly the same way as the cellular membranes of the body. This means they can be used as a unique delivery system for nutrients, drugs and other agents to specific areas in an organism. There are a numbers of ways in which liposome manufacturing is achieved, all of which have advantages and disadvantages.

When phosphlipids such as lecithin come into contact with water, an interesting effect occurs. The molecules consist of a head which loves water and two tails that repel it. This means that the heads all face one side and the tails the other. Another layer is formed with tails all facing the tails of the first later and the heads facing the other way. These layers form the membranes around and inside every cell of the human body.

Liposomes are used to deliver toxic drugs to target cancer cells. They are used for delivering nutrients deficient in the body or cosmetic nutrients to the skin. Many other medical applications are possible too such as in the field of genetics. Preparation methods depend on various factors such as the characteristics of the material to be carried, the consistency offered from batch to batch and scale of production.

All liposomes consist of a lipid bilayer encapsulating a payload of therapeutic molecules. They bypass the digestive tract, so the payload remains biologically inert until such stage as the cell membrane ruptures. The difference between liposomes comes in the way, how, when and where that occurs.

The methods used in preparation may all be quite different but the basic stages remain the same. Thin lipid films are hydrated and this causes liquid bilayers to form. These large vesicles need to be reduced in size and energy output is required for this. Sonication is the use of sound waves and another mechanical method used is extrusion.

Different methods are known to have certain weaknesses and strengths. Some allow for high load dosing and others offer much lower dose loading. Some of them offer more consistency and stability. The encapsulated content is affected more by some methods than others.

Some of the problems that have to be faced are structural instability, inconsistency in size and expensive production costs. Liposomal delivery systems are still in the experimental stage. The precise ways in which they act within the body are being carefully studied as well as ways in which they can be made to target diseased tissue or a specific organ.

A great benefit involved in using liposomes is that they can be customized for different applications by varying the method of preparation, size, lipid content and surface charge. Many conventional techniques for preparing them and reducing their size are fairly simple to implement and equipment does not have to be too sophisticated. However, novel routes are being discovered for preparation due to motivation to scale-down for point-of-care applications or or to scale-up for industrial applications.




About the Author:



No comments:

Post a Comment

Free Facebook Likes, Youtube Subscribers,  Twitter Followers